LITHE

Composing Parallel Software
Efficiently

Kevin Klues
klueska@cs.berkeley.edu

DEGAS Summer Retreat
June 4th, 2013
http://lithe.eecs.berkeley.edu

Where Does Lithe Fit?

- Activities funded outside of DEGAS 2

Where Does Lithe Fit?

- Activities funded outside of DEGAS 3

Composition is King

e —
game () {
forall frames:
AI.compute()

Composition is King

game () {
forall frames:

AI.compute()
.play() ;

Composition is King

game () {
forall frames:

AI.compute()

.play()
Graphics.render() ;

Composition is King

game () {
forall frames:

AI.compute()
.play()
Graphics.render () {

Physics.calec ()

Composition is King

game () {
forall frames:

AI.compute()
.play()
Graphics.render () {

Physics.cale ()

» Productivity: Don’t want to implement & understand everything.

Composition is King

game () {
forall frames:

AI.compute()
.play()
Graphics.render () {

Physics.cale ()

» Productivity: Don’t want to implement & understand everything.

« Performance: Leverage language & runtime optimizations within components.

Composition is King

game () {
forall frames:

AI.compute()
.play()
Graphics.render () {

Physics.cale ()

» Productivity: Don’t want to implement & understand everything.
« Performance: Leverage language & runtime optimizations within components.

- Diversity: Components may want to use different abstractions & languages.
10

Composition is King

game () {
forall frames:

AI.compute () ||

.play () |l
Graphics.render () {

Physics.cale ()

» Productivity: Don’t want to implement & understand everything.
« Performance: Leverage language & runtime optimizations within components.

- Diversity: Components may want to use different abstractions & languages.
1

Multiple Components Oversubscribe Resources

TBB OpenMP
oS

Hardware 12

Multiple Components Oversubscribe Resources

OpenMP
(0153

Hardware 13

Multiple Components Oversubscribe Resources

tbb: : task ()

OpenMP
(0153

Hardware 14

Multiple Components Oversubscribe Resources

tbb::task () {
matmult () ;

OpenMP
(0153

Hardware 15

Multiple Components Oversubscribe Resources

tbb::task () { matmult ({
matmult () ; #pragma omp parallel

OpenMP
(0153

Hardware 16

Multiple Components Oversubscribe Resources

tbb::task () { matmult ({
matmult () ; #pragma omp parallel

OpenMP
(0153

Hardware 1%

Multiple Components Oversubscribe Resources

tbb: :task () { matmult () { matmult {
matmult () ; #fpragma omp parallel #fpragma omp parallel

OpenMP
(0153

Hardware 18

MKL Quick Fix

Using Intel MKL with Threaded Applications

http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm

Software Products

Intel® Math Kernel Library (Intel® MKL)
Using Intel® MKL with Threaded Applications

Page Contents:

® Memory Allocation MKL: Memory appears to be allocated and not released
when calling some Intel MKL routines (e.g. sgetrf).

® Using Threading with BLAS and LAPACK

® Setting the Number of Threads for OpenMP (OMP)

® Changing the Number of Processors for Threading During Runtime

® Can I use Intel MKL if I thread my application?

Memory Allocation MKL: Memory appears to be allocated and not released when calling
some Intel® MKL routines (e.g. sgetrf).

One of the advantages of using the IntelMKL is that it is mutithreaded using

OpenMP*. OpenMP" reqires buffers to perform some operations and allocates memory

even for single-processor systems and single-thread applications. This memory allocation
oceurs once the first time the OpenMP software is encountered in the program. This memory
allocation persists until the application terminates. In addition, the Windows" operating system
will allocate a stack equal to the main stack for every addtional thread created. so the amount
of memory that is automatically allocated will depend on the main stack, the OpenMP
allocations and the number of threads used.

Using Threading with BLAS and LAPACK

Intel MKL is threaded in a number of places: LAPACK (*GETRF, "POTRF. *GBTRF routines),
Level 3 BLAS, DFTs, and FFTs. Intel MKL uses OpenMP" threading software. There are
situations in which conflicts can exist that make the use of threads in Intel MKL problematic.
We list them here with recommendations for dealing with these. First, a brief discussion of why
the problem exists is appropriate.

If the user threads the program using OpenMP directives and uses the Intel® Compilers to
compile the program. Intel MKL and the user program will both use the same threading library.
Intel MKL tries to determine f it is in a paraliel region in the program, and it is. it does not
spread its operations over mutiple threads. But Intel MKL can be aware that it is in a parallel
region only if the threaded program and Intel MKL are using the same threading library. If the
user program is threaded by some other means, Intel MKL may operate in muttithreaded
mode and the computations may be corrupted. Here are several cases and our
recommendations:

® User threads the program using OS threads (pthreads on Linux*, Win32*
threads on Windows*). If more than one thread calls Intel MKL and the
function being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS=1 in the environment.

® User threads the program using OpenMP directives and/or pragmas and
compiles the program using a compiler other than a compiler from Intel.
This is more problematic because setting OMP_NUM_THREADS in the
environment affects both the compiler’s threading library and the threading

library with Intel MKL. In this case, the safe approach is to set
OMP_NUM_THREADS=1.

Multiple programs are running on a multiple-CPU system. In cluster
applications, the parallel program can run separate instances of the
program on each processor. However, the threading software will see
multiple processors on the system even though each processor has a

separate process running on it. In this case OMP_NUM_THREADS should be

setto 1.

® If the variable OMP_NUM_THREADS environment variable is not set, then
the default number of threads will be assumed 1.

Setting the Number of Threads for OpenMP* (OMP)
The OpenMP* software responds to the environment variable OMP_NUM_THREADS:

® Windows*: Open the Environment panel of the System Properties box of
the Control Panel on Microsoft* Windows NT*, or it can be set in the shell
the program is running in with the command: set OMP_NUM_THREADS=
<number of threads to use>.

® Linux*: To set and export the variableP "export OMP_NUM_THREADS=
<number of threads to use>".

Note: Setting the variable when running on Microsoft* Windows" 98 or Windows* Me is
meaningless. since multiprocessing is not supported.

Changing the Number of Processors for Threading During Runtime
It s not possible to change the number of processors during runtime using the emvironment
variable OMP_NUM_THREADS. You can call OpenMP API functions from your program to
change the number of threads during runtime. The following sample code demonstrates
changing the number of threads during runtime using the omp_set_num_threads() routine:

#include "omp "
#include "mkLh"

#include <stdio.h>

#define SIZE 1000

void main(int args. char "argvI{

double *a, *b. *c:
= new double [SIZE'SIZE]:

¢ = new double [SIZE"SIZE]:

double alpha=1, beta=1;
int m=SIZE, n=SIZE, k=SIZE, Ida=SIZE. Idb=SIZE, kdc=SIZE. i=0. j=0:
char transa="rl, transb="n;

c[i"SIZE+j]= (double)0:
}

}

chlas_dgemm(Cl c
m, n, k, alpha, a, Ida, b, idb, beta, c, Idc);

printf{"rowita\ten®);
for (i=0:i<10:i++)

printf(*%c:\t% At AN, i, ali*SIZE], c[i'SIZE]):
}

omp_set_num_threads(1):

for(i=0: i<SIZE: i++){
for(j=0: [<SIZE; j++}

a[i"SIZE+jj= (double)(i+j):
bi*SIZE+jj= (double)(i*j):
c[i*SIZE+j]= (double)0:

) }

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans.

m. n, k, alpha, a, Ida, b, kib, beta, c. Idc):

printf(*rowitaltcin®);
for (=0 10i++)
printf{*%d:\t%fto%An", i, a[i"SIZE],
[i*SIZE]):
}

omp_set_num_threads(2):
for(i=0; i<SIZE: i++)
for(j=0: j<SIZE; j++){
a[i*SIZE+j)= (double)(i+j).
bi*SIZE+j}= (double)(i*j):
c[I"SIZE+j]= (double)0:
! }
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m. n. k, alpha. a, Ida. b, kb, beta. c. Idc);

printf("rowitaltein’);
for (=0:i<10+)
Printf(*%d:t%At%AN", i, a[i*SIZE],
ofi*SIZE]):
}

delete [] a;
delete [] b:
delete [] c:

Can | use Intel MKL if | thread my application?

The Intel Math Kernel Library is designed and compied for thread safety so it can be called
from programs that are threaded. Calling Intel MKL routines that are threaded from muitiple
application threads can lead to confict (including incorrect answers or program failures), if the
calling library differs from the Intel MKL threading library.

19

MKL Quick Fix

Using Intel MKL with Threaded Applications

http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm

Software Products

library with Intel MKL. In this case, the safe approach is to set
OMP_NUM_THREADS=1.

Multiple programs are running on a multiple-CPU system. In cluster
applications, the parallel program can run separate instances of the
program on each processor. However, the threading software will see
multiple processors on the system even though each processor has a
separate process running on it. In this case OMP_NUM_THREADS should be

Intel® Math Kernel Library (Intel® MKL)
Using Intel® MKL with Threaded Applications

Page Contents:

® Memory Allocation MKL: Memory appears to be allocated and not released
when calling some Intel MKL routines (e.g. sgetrf).

printf(“row\ta\tc\n");
for (=0:i<10:i++){

printf("%d: \t%At%An", i, a[i*SIZE], c[i*SIZE]):
}

omp_set_num_threads(1);

setto 1. for(i=0; i<SIZE:; i++){
for(=0: j<SIZE; ++}
® If the variable OMP_NUM_THREADS environment variable is not set, then a["SIZE+]= (double)(i*j):
the default number of threads will be assumed 1. B SIZE4 = (doubla)():
c[i*SIZE+j]= (double)0:
- oK Setting the Number of Threads for OpenMP* (OMP) }

Using Threading wi

Setting the Numb:
Changing the Nu
Can I use Intel M|

1 1f more than one thread calls Intel MKL and the

some Intel® MKL routjpes

=
oceurs once the first thd
allocation persists ugtil the a)
will allocate a stacl‘(?q

== function being called is threaded, it is important
== that threading in Intel MKL be turned off.

situations in wilich conflicts of

st Set OMP NUM THREADS=1 in the environment.

We list them bere with - ”
the problem ffists is appropriate. #define SIZE 1000

If the user Jhreads the pro‘im using OpenMP directives and uses the Intel® Compilers to
compile thl program, Intel MKL and the user program will both use the same threading library.
Intel MKLytries to detegffine i it is in a parallel region in the program, and i it is, it does not double *a, *b. "¢
spread #f operations over mutiple threads. But Intel MKL can be aware that it is in a parallel a= new double [SIZE"SIZE]:
region only if the thyffaded program and Intel MKL are using the same threading library. If the new double [SIZE"SIZE]:
user prffigram is thréaded by some other means, Intel MKL may operate in multithreaded ¢ = new double [SIZE"SIZE]:
mode #nd the coghputations may be corrupted. Here are several cases and our
re ndatiofls: double alpha=1. beta=1;
7 int m=SIZE. n=SIZE,
uSewaeads the program using OS threads (pthreads on Linux*, Win32* char transa='r, trans!
thieads on Windows*). If more than one thread calls Intel MKL and the
fiffiction being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS=1 in the environment.

void main(int args. char "argvI{

1ZE. Ida=SIZE. Idb=SIZE, kc=SIZE. i=

for(i=0; i<SIZE: i++){
for(j=0; [<SIZE; j+
a[I*SIZE+j}= (double)(+j):
b[i*SIZE+]j= (double)(i}):
c[i"SIZE+j]= (double)0:

User threads the program using OpenMP directives and/or pragmas and

compiles the program using a compiler other than a compiler from Intel. }

This is more problematic because setting OMP_NUM_THREADS in the }

environment affects both the compiler's threading library and the threading cblas_dgemm(CblasRowMsjor, CblasNoTrans, CblasNoTrans,
m. n. k, alpha, 3, Ida, b, idb, beta, c, Idc);

printf("rowita\tc\n®);
for (FOii< 10+)
Printf(*%d:\t%At%AN", i, a[*SIZE],
Cli*SIZE)):
}

delete [] a:
delete [] b:
delete [] c:

}

Can | use Intel MKL if | thread my application?

The Intel Math Kernel Library is designed and compied for thread safety so it can be called
from programs that are threaded. Calling Intel MKL routines that are threaded from multiple
application threads can lead to confiict (including incorrect answers or program failures), if the
calling library differs from the Intel MKL threading library.

20

Breaks Black Box Abstraction

AN
Programmer
—

2

Breaks Black Box Abstraction

Programmer@ \\é ?

Breaks Black Box Abstraction

Programmer OMP_NUM_THREADS = 1

o

28

Exports Problem to User

Graphics

Physics

24

Exports Problem to User

Graphics

Physics

Exports Problem to User

"
2
<
Q
®
|
o

26

Exports Problem to User

Graphics

Physics

Better Resource Abstraction: HARTS

Application
Library A

\\\\ IR REERRRE
OS Threads
§§§§

Core0 Core1 Core2 Core3
Hardware

28

Better Resource Abstraction: HARTS

Application Application
Lib A j Lib B Lib B
VLD VD L RN
3333 : 3 3 3 3
Osggrgegds Harts = Hardware Thread Contexts

-

~<
-~
~o
-~

>~

Core0 Core1 Core2 Core3 Core0 Core1 Core2 Core3
Hardware Hardware

Better Resource Abstraction: HARTS

Application

1\ \

SRR RN
3333

OS Threads

Core0 Core1 Core2 Core3

Hardware

> Create as many threads as wanted.

-

Application

Library | e
s 3 3

2

Harts = Hardware Thread Contexts

Core0 Core1 Core2 Core3

Hardware

> Allocated a finite amount of harts.

30

Better Resource Abstraction: HARTS

Application

1\ \

Application

SRR RN

! \‘\ \\
1 \\ \\

2333 : 2 3 3 3
OS Threads Harts = Hardware Thread Contexts

Core0 Core1 Core2 Core3

Hardware

> Create as many threads as wanted.

Hardware

Core0 Core1 Core2 Core3

> Allocated a finite amount of harts.

> Threads = Resource + Programming Abstraction <« Harts = Resource Abstraction

31

Cooperative Hierarchical
Resource Scheduling

task () { Parent (Caller)

matmult () { U’

Application. _
Call Graph ~~~.
Hierarchy ~~.

- Child (Callee)

32

Cooperative Hierarchical
Resource Scheduling

Parent (Caller)

task () {
matmult () {

Application.. _
Call Graph ~~~__
Hierarchy Tt~ ,
| Child (Callee)

Transfer of control coupled with transfer of resources. .

Cooperative Hierarchical
Resource Scheduling

Parent (Caller)
task () { ,

matmult () { .7

} Return

|
Application.. _
Call Graph ~~~__
Hierarchy -l

s Child (Callee)

Transfer of control coupled with transfer of resources. N,

Cooperative Hierarchical
Resource Scheduling

tbb: :task () { Parent (Caller)

matmult () {
#pragma omp parallel

e
e

} -

7’
7,
£
7

™
]

i

Application.. _
Call Graph ~~~.
Hierarchy T~

s Child (Callee)

Transfer of control coupled with transfer of resources. N

Cooperative Hierarchical
Resource Scheduling

Parent (Caller)
tbb: :task () {

matmult () {
#pragma omp parallel

} -
e
. e

7’
7,
£
7

™
]

i

Appl\ic;a"ti'on\ -
Call Graph ~
Hierarchy

s Child (Callee)

Transfer of control coupled with transfer of resources. .

Cooperative Hierarchical
Resource Scheduling

Parent (Caller)
tbb: :task () {

matmult () {
#pragma omp parallel

} -
e
. e

7’
7,
£
7

™
]

i

Appl\ic;a"ti'on\ -
Call Graph ~
Hierarchy

s Child (Callee)

Transfer of control coupled with transfer of resources. .

Confluence of Related Work

Hierarchical Scheduling Cooperative Scheduling

Lottery Schedulina (Waldspurger 94) Continuation-Based

CPU Inheritance (Ford 96) Multiprocessing "a"? 8%
Converse (Kale 96) Manticore (Fiuet 08)

HLS (Regehr01) GHC (Lio7)

Lithe

38

Confluence of Related Work

Hierarchical Scheduling Cooperative Scheduling

Lottery Schedulina (Waldspurger 94) Continuation-Based
Parent)) . Wand 80)
CPU Inheritance (Ford 96) Multiprocessing
Tasks Converse (Kale 96) Manticore (Fluet 08)
(Threads) HLS (Regehr01) GHC (Lio7)
Child

Lithe

35

Confluence of Related Work

Hierarchical Scheduling Cooperative Scheduling

Lottery Schedulina (Waldspurger 94) Continuation-Based
Parent . . . Wand 80)
CPU Inheritance (Ford 96) Multiprocessing
Tasks Converse (Kale 96) Manticore (Fluet 08)
(Threads) HLS (Regehr01) GHC (Lio7)
Child

Parent

Resources
(Harts)

Child Lithe b

Confluence of Related Work

Hierarchical Scheduling Cooperative Scheduling

Parent Lottery Schedulina (Waldspurger 94) Continuation-Baslc/-:'Vglnd 50)
CPU Inheritance (Ford 96) Multiprocessing
Tasks Converse (Kale 96) Manticore (Fluet 08)
(Threads) HLS (Regehr01) GHC (Lio7)
. - Unstructured
Child Transfer of Control

Parent

Resources
(Harts)

Child Lithe 1

Confluence of Related Work

Hierarchical Scheduling Cooperative Scheduling

Parent Lottery Schedulina (Waldspurger 94) Continuation-Baslc/-:'Vglnd 50)
CPU Inheritance (Ford 96) Multiprocessing
Tasks Converse (Kale 96) Manticore (Fluet 08)
(Threads) HLS (Regehr01) GHC (Lio7)
. . Unstructured
Child Transfer of Control

Structured I
Transfer of |
Control I

Parent

Resources
(Harts)

|
Child Lithe : §

———J
'———

42

The Lithe Runtime

TBB OpenMP

oS

Hardware

43

The Lithe Runtime

Lithe Runtime

oS

Hardware

44

The Lithe Runtime

TBB jthe OpenMP ;..

Lithe Runtime

oS

Hardware

45

The Lithe Runtime

harts

TBB jthe OpenMP ;..

Lithe Runtime

oS

Hardware

46

The Lithe Runtime

current
scheduler

OpenMP, ;.

|

scheduler hierarchy

TBByin. | OpenMPy;.

Lithe Runtime
oS

Hardware 47

The Lithe Runtime

transfer

transfer
transfer

transfer
transfer

transfer

TBB jthe OpenMP ;..

Lithe Runtime

oS

Hardware

transfer

transfer

time

48

48

Standard API/Callback Interface

task () {
matmult () {

}

matmult

Child

Separation of Interface and Implementation

49

Standard API/Callback Interface

task () {
matmult () {

}

sched enter

hart request
} sched exit

Separation of Interface and Implementation

Standard API/Callback Interface

tbb: :
A - — — - — — — — — — — — — — — — = — = -

matmult () {
#pragma OMP parallel

... I child enter [hart enter| child exit | ... |

333

- IS S S S\ W IS S S B S B B B A B S S e .

OpenMP ;..
| ... | child enter |hart enter] child exit] ... |

sched enter
hart request
sched exit

Separation of Interface and Implementation

58

Standard API/Callback Interface

cilk
task() { B

matmult () {
#pragma OMP parallel

... I child enter [hart enter| child exit | ... |

333

- IS S S S\ W IS S S B S B B B A B S S e .

OpenMP ;..
| ... | child enter |hart enter] child exit] ... |

sched enter
hart request
sched exit

Separation of Interface and Implementation 50

Enter/Exit a Scheduler

%matmult () {

time

53

Enter/Exit a Scheduler

gmatmult () {
sched enter (OpenMP;,,.) ;

OpenMP, ;.

time

54

Enter/Exit a Scheduler

TBB, e matmult () {
... 1 child_enter |__childexit [.. |

l sched enter (OpenMP,;,,.) ;
OpenMP, ;.

time

55

Enter/Exit a Scheduler

matmult () {

sched enter (OpenMP,;,,.) ;

OpenMP, ;.

time

56

Enter/Exit a Scheduler

matmult () {

OpenMP, ;.

sched enter (OpenMP,;,,.) ;

sched exit();

time

57

Enter/Exit a Scheduler

TBBLithe
.| childenter | child_exit [__.. |

OpenMP, ;.

matmult () {

sched enter (OpenMP,;,,.) ;

sched exit();

time

58

Enter/Exit a Scheduler

matmult () {

sched enter (OpenMP,;,,.) ;

sched exit();
}

time

59

Enter/Exit a Scheduler

matmult () {

sched enter (OpenMP,;,,.) ;

sched exit();
}

time

sched enter () dynamically adds the new scheduler to the hierarchy.
sched exit ()dynamically removes a scheduler from the hierarchy. 60

Request/Grant/Yield a Hart

TBBLithe
.. | hart return | hart request | .. |

l

OpenMP ..

matmult () {

sched enter (OpenMP,;,,.) ;

e | nartenter I .. |

time

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. o

Request/Grant/Yield a Hart

TBBLithe
.. | hart return | hart request | .. |

matmult () {

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

time

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. o2

Request/Grant/Yield a Hart

TBBLithe
.| hart return | hart_request [___.._____

matmult () {

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

time

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. o3

Request/Grant/Yield a Hart

TBBLithe
.. | hart return | hart request | .. |

matmult () {

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

time

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. o3

Request/Grant/Yield a Hart

TBBLithe
| hart return | hart request | ...

matmult () {
I

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

% hart grant()

v

time

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. °3

Request/Grant/Yield a Hart

TBBLithe

matmult () {
... | hartreturn | hart request | ...
sched enter (OpenMP,;,,.) ;
l hart request(n);

OpenMP., ...
.. | phartenter .. |

% hart grant()

time

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. o8

Request/Grant/Yield a Hart

TBBLithe
| hart return | hart request | ...

matmult () {
I

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

hart grant()

v

time

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. °f

Request/Grant/Yield a Hart

TBBLithe
| hart return | hart request | ...

matmult () {
I

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

hart grant()

v

time hart yield();

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. o8

Request/Grant/Yield a Hart

TBBLithe
... | hart_return [hart request | .. |

matmult () {

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

hart grant()

v

time hart yield();

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. o8

Request/Grant/Yield a Hart

TBBLithe
| hart return | hart request | ...

matmult () {
I

sched enter (OpenMP;,,.) ;
l hart request(n);

OpenMP ..

e | nartenter I .. |

hart grant()

v

time hart yield();

hart request() ,hart grant() ,hart yield()

transfer harts between a parent and child. s

Putting it All Together

Hart 1 Hart 2 Hart 3 Time

= =

Physics

v
Core Core
2 3 71

Putting it All Together

Hart 1 Hart 2 Hart 3 Time

Ehzs_icg gmatmult () % %

tbb::task () {
matmult () {
#pragma omp parallel

}

v
Core Core Core Core
0 1 2 3 [

Putting it All Together

m Hart O Hart 1 Hart 2 Hart 3 Time

matmult () %

@® hart request()
. qu>

Physics

\WOMN

tbb::task () {
matmult () {
#pragma omp parallel

}

v
Core Core Core Core
0 1 2 3 73

Putting it All Together

rt 1 Hart 2 Hart 3 Time

Q

- LR

Graphics

Physics matmult ()

hart request()

%hart_enter ()

WWW WMV

tbb::task () {
matmult () {
#pragma omp parallel

}

v
Core Core Core Core
0 1 2 3 f/

Putting it All Together

matmult () %

hart request()

i @
hart enter()
tbb: :task () { _
matmult () { hart yield()

#pragma omp parallel

rt 1 Hart 2 Hart 3 Time

— Game | Hat0 Han

Graphics

Physics

}

v
Core Core Core Core
p. 3 73

Putting it All Together

rt 1 Hart 2 Hart 3 Time

Q

- LR

Graphics

Physics matmult ()

hart request()
hart enter()

tbb::task () {
matmult () {
#pragma omp parallel

hart yield()
hart yield()

-

1

}

WA ANOMN

H

v
Core Core
2 3 76

Lithe Context Support

* Basic user-level threading API
* Integrated directly to work well with harts

+ Can be extended by each library for
custom scheduler support

+ Callbacks into scheduler similar to hart
callbacks when operation performed

lithe_context_init()
lithe_context_cleanup()
lithe_context_run()
lithe_context_block()
lithe_context_unblock()
lithe_context_yield()

lithe_context_exit() 1

Real World Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

oS

Hardware

System Stack

78

Real World Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column
Elimination
Tree

oS

Hardware

System Stack Software Architecture
79

Real World Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column
Elimination
Tree
Frontal Matrix
Factorization

Hardware

System Stack Software Architecture
80

Performance of SPQR on 16-Core machine

. Out-of-the-Box

TBB=16 * OMP=16

Time (sec)
N NN w W
~ (o) (o) W - N

NN
ga o

landmark

16 -
14 -

12
10

N N N N N A N

o N A~ O @
|

deltaX

75 -
70 1]
65
60
55
50
45 1]

40 -

Input Matrix

ESOC

275
270
265
260

255
250
245

240
235 A

A N N N N NN

Rucci

81 81

Performance of SPQR on 16-Core machine

Time (sec)

» o
w = N
Il

NN
ga o

N ONN
~ [0} 0
1 L Il

. Out-of-the-Box

. Manually Tuned

TBB=16 * OMP=16

landmark
TBB=11* OMP=8

16 -
14 -
12 -

10

o N A~ O @
|

AN N N N N AN

deltaX ESOC
TBB=3 « OMP=5 TBB=16 * OMP=5

Input Matrix

275
270
265
260
255
250 -
245
240
235 A

Rucci
TBB=16 * OMP=8

82

82

SPQR with Lithe

SPQR

Hardware

» Library interfaces remain the same
« Zero lines of high-level code changed (SPQR, MKL)

83

SPQR with Lithe

SPQR

OpenMP, ;.

oS

Hardware

» Library interfaces remain the same
« Zero lines of high-level code changed (SPQR, MKL)
e Just link in Lithe runtime + Lithe versions of libraries (TBB, OpenMP)

84

Performance of SPQR with Lithe

Time (sec)

» W
W - N
L

NONON
~N o0

NN
a o0

. Out-of-the-Box

. Manually Tuned

Lithe

TBB=16 * OMP=16

landmark
TBB=11 OMP=8

16
14
12
10

o N & OO O

NN N NN NN

deltaX ESOC

TBB=3 * OMP=5 TBB=16 * OMP=5

Input Matrix

275 -
270 -
265 -
260 -
255
250 -
245 -
240 -
235 -

Rucci
TBB=16 * OMP=8

85 85

Lithe Enables Flexible Sharing of Resources

86

Lithe Enables Flexible Sharing of Resources

Give resources to OpenMP

87

Lithe Enables Flexible Sharing of Resources

Give resources to OpenMP

Give resources to TBB

88

Lithe Enables Flexible Sharing of Resources

Give resources to OpenMP

Give resources to TBB

Manual tuning is stuck with 1 TBB/OMP config throughout run. 89

Flickr-Like Image Processing App Server

App Server

oS

Hardware

System Stack

90

Flickr-Like Image Processing App Server

App Server

Libprocess

oS

Hardware
Requests

System Stack

93

Flickr-Like Image Processing App Server

App Server

Graphics
Magick Image

Libprocess Resizin

Hardware
Requests

\

System Stack

92

Performance of App Server

6
(16-Core Machine)
'_g S # OMP Threads = 1
§ 4 # OMP Threads = 2
o
N # OMP Threads =4
O # OMP Threads =8
c
g 2 o— oo # OMP Threads = 16
©
- 1 o * Lithe
0

0O 05 1 1.5 2 25 3

Throughput (Requests / Second) 93

Future Directions

* OS Support for Lithe
+ Akaros, Tessellation

* Preemptive Version of Lithe
* Direct support for MPI

* Integrate with GASNet
= Leverage lithe contexts

« Other ways to integrate with the
DEGAS stack?

94

OS Support for Lithe

Lithe Runtime

% % % % User-Level

OS Support for Lithe

L|th§unt|§
z =

oS User-Level
Hart Impl

Hard%ware

96

OS Support for Lithe

User-Level
Hart Impl

OS-Level
Hart Impl

Hard?ware

Hard%ware

94

OS Support for Lithe

User-Level
Hart Impl

OS-Level
Hart Impl

: Harc vare

Hardéware

98

Conclusion

« Composability essential for parallel programming to
become widely adopted

functionality

resource management

« Parallel Ilbrarles need to share resources cooperatively
II

h
E
« Main Contributions
+ Harts: better resource model for parallel programming
+ Lithe: framework for using and sharing harts

95

Questions?

7 P MKE

oS

|

Hardware

http://lithe.eecs.berkeley.edu

100

Preemptive Lithe

 Three-level priority scheme
+ Same Priority > Cooperative
+ Higher priority can only preempt lower
+ Developer sets runtime priorities
+ Lithe runtime enforces priorities

* Current Lithe == Single Level @ real-Time Periodic

